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Autonomic Computing

Ability of a computer resource to adapt itself to changes in the
runtime environment or in the desired quality of services.

I Response to the complexity in the maintenance of systems

I Based on the idea of self-governing systems

I Requires high-level objectives from an administrator

How?

I feedback control loop

I Implementation referenced as
MAPE autonomic control loop:

“Monitor, Analyze, Plan
& Execute”
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Design

Using Components to Provide a Flexible Adaptation Loop to
Componente-based SOA Application
C. Ruz, F. Baude, B. Souvan

I Implement each phase of the autonomic control loop by a
different component.

I Attach these components to each managed service.

I Allow dynamically reconfiguration of the autonomic control
loop
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Goal

Goal:

Implement the autonomic control loop to provide Autonomic
Management features to GCM/ProActive components



Implementation: Technical Background

I Grid Component Model (GCM)
I Extension of the Fractal Component Model
I Support for distributed deployment
I Support for collective communications

I Using the GCM/ProActive reference implementation
I Based on asynchronous active objects, and futures
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Implementation: Component Controllers

I MAPE Components attached to GCM membranes

I Using NF server and client interfaces

I Definition of an API to manipulate MAPE components
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Monitoring Component

Collection, storage, computation of metrics

I Collecting JMX events from GCM/ProActive

I Supports insertion/removal of metrics

I Notifies active metrics changes
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Analysis Component

Checking of conditions and generation of alarms

I Rules subscribe to Metrics

I Sends an Alarm object if necessary
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Planning Component

Execution of planning algorithms (strategies)

I Associates an Alarm to one or more strategies
I Support for multiple strategies using multicast interfaces

I Selection, parallel execution of strategies

Analyzer Controller

Planner
Manager

Planner 1

Planner 2

Planner N

..

.

2 3

actions call

4

get metrics

alarms

1 plans



Execution Component

Execution of Actions over the component/service

I Support to execute reconfigurations using the GCM/ProActive
API (Java code embedded in a Action object)

I Support to execute reconfigurations using PAGCMScript
language code (extends of FScript).
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Use Case

I MD5Hash brute force cracker

I Multiactive service

I Each Solver deployed on on a different machine

I Each Solver has several workers (Slaves)
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Use Case

Run parameters:

I Maximum number of Solvers = 3

I Maximum number of Slaves per Solver = 3

I Starting with 1 Solver and 1 Slave



Use Case: Results
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Current Work

Current Work

I Allows instantiation of managed components using ADL
descriptor file only.

I More and different examples

I Benchmarking


