
Autonomic Management of GCM/Proactive
Components

INRIA/NICLabs SCADA Associate Team

16 June 2014



Autonomic Computing

Ability of a computer resource to adapt itself to changes in the
runtime environment or in the desired quality of services.

I Response to the complexity in the maintenance of systems

I Based on the idea of self-governing systems

I Requires high-level objectives from an administrator

How?

I feedback control loop

I Implementation referenced as
MAPE autonomic control loop:

“Monitor, Analyze, Plan
& Execute”

Collect

Analyse

Decide

Act

Sensors
Instrumentation

Context
Events

Notifications

Effectors

Managed 
Resources

Planification
Decision theory

Strategies
Risk analysis

Symptoms
Uncertainty 
reasoning

Inferences
Rules

Policies



Autonomic Computing

Ability of a computer resource to adapt itself to changes in the
runtime environment or in the desired quality of services.

I Response to the complexity in the maintenance of systems

I Based on the idea of self-governing systems

I Requires high-level objectives from an administrator

How?

I feedback control loop

I Implementation referenced as
MAPE autonomic control loop:

“Monitor, Analyze, Plan
& Execute”

Collect

Analyse

Decide

Act

Sensors
Instrumentation

Context
Events

Notifications

Effectors

Managed 
Resources

Planification
Decision theory

Strategies
Risk analysis

Symptoms
Uncertainty 
reasoning

Inferences
Rules

Policies



Autonomic Computing

Ability of a computer resource to adapt itself to changes in the
runtime environment or in the desired quality of services.

I Response to the complexity in the maintenance of systems

I Based on the idea of self-governing systems

I Requires high-level objectives from an administrator

How?

I feedback control loop

I Implementation referenced as
MAPE autonomic control loop:

“Monitor, Analyze, Plan
& Execute”

Collect

Analyse

Decide

Act

Sensors
Instrumentation

Context
Events

Notifications

Effectors

Managed 
Resources

Planification
Decision theory

Strategies
Risk analysis

Symptoms
Uncertainty 
reasoning

Inferences
Rules

Policies



Design

Using Components to Provide a Flexible Adaptation Loop to
Componente-based SOA Application
C. Ruz, F. Baude, B. Souvan

I Implement each phase of the autonomic control loop by a
different component.

I Attach these components to each managed service.

I Allow dynamically reconfiguration of the autonomic control
loop



Design

Using Components to Provide a Flexible Adaptation Loop to
Componente-based SOA Application
C. Ruz, F. Baude, B. Souvan

I Implement each phase of the autonomic control loop by a
different component.

I Attach these components to each managed service.

I Allow dynamically reconfiguration of the autonomic control
loop

Plan

Analyze Monitor

Execute



Design

Using Components to Provide a Flexible Adaptation Loop to
Componente-based SOA Application
C. Ruz, F. Baude, B. Souvan

I Implement each phase of the autonomic control loop by a
different component.

I Attach these components to each managed service.

I Allow dynamically reconfiguration of the autonomic control
loop

P

A M

E

Service
A

P

A M

E

Service
B

P

A M

E

Service
C



Design

Using Components to Provide a Flexible Adaptation Loop to
Componente-based SOA Application
C. Ruz, F. Baude, B. Souvan

I Implement each phase of the autonomic control loop by a
different component.

I Attach these components to each managed service.

I Allow dynamically reconfiguration of the autonomic control
loop

P

A M

E

Service
A

P

A M

E

Service
B

P

A M

E

Service
C



Design

Using Components to Provide a Flexible Adaptation Loop to
Componente-based SOA Application
C. Ruz, F. Baude, B. Souvan

I Implement each phase of the autonomic control loop by a
different component.

I Attach these components to each managed service.

I Allow dynamically reconfiguration of the autonomic control
loop

P

A M

E

Service
A

M

E

Service
B

M

Service
C



Design

Using Components to Provide a Flexible Adaptation Loop to
Componente-based SOA Application
C. Ruz, F. Baude, B. Souvan

I Implement each phase of the autonomic control loop by a
different component.

I Attach these components to each managed service.

I Allow dynamically reconfiguration of the autonomic control
loop

M

Service
A

M

Service
B

M

Service
C



Design

Using Components to Provide a Flexible Adaptation Loop to
Componente-based SOA Application
C. Ruz, F. Baude, B. Souvan

I Implement each phase of the autonomic control loop by a
different component.

I Attach these components to each managed service.

I Allow dynamically reconfiguration of the autonomic control
loop

Service
A

Service
B

Service
C



Goal

Goal:

Implement the autonomic control loop to provide Autonomic
Management features to GCM/ProActive components



Implementation: Technical Background

I Grid Component Model (GCM)
I Extension of the Fractal Component Model
I Support for distributed deployment
I Support for collective communications

I Using the GCM/ProActive reference implementation
I Based on asynchronous active objects, and futures

Bindings

Primitive
Component

Composite
Component

Content
Membrane

Client
Interfaces

Server
Interfaces

Control
Interfaces



Implementation: Technical Background

I Grid Component Model (GCM)
I Extension of the Fractal Component Model
I Support for distributed deployment
I Support for collective communications

I Using the GCM/ProActive reference implementation
I Based on asynchronous active objects, and futures

Bindings

Primitive
Component

Composite
Component

Content
Membrane

Client
Interfaces

Server
Interfaces

Control
Interfaces



Implementation: Technical Background

I Grid Component Model (GCM)
I Extension of the Fractal Component Model
I Support for distributed deployment
I Support for collective communications

I Using the GCM/ProActive reference implementation
I Based on asynchronous active objects, and futures

Active Object

Invocation flow

Passive Object



Implementation: Technical Background

I Grid Component Model (GCM)
I Separation between F and NF concerns (Naoumenko, 2010)



Implementation: Technical Background

I Grid Component Model (GCM)
I Separation between F and NF concerns (Naoumenko, 2010)



Implementation: Component Controllers

I MAPE Components attached to GCM membranes

I Using NF server and client interfaces

I Definition of an API to manipulate MAPE components

A

Managed Service A

Monitor
Controller

Analyzer
Controller

Planner
Controller

Executor
Controller

External
Monitor Controller

Monitoring Analysis Planning Execution



Implementation: Component Controllers

A

Managed Service A

Monitor
Controller

Analyzer
Controller

Planner
Controller

Executor
Controller

External
Monitor Controller

Monitoring Analysis Planning Execution

I (Metrics, Rules, Plans, Actions) = High-Level Objectives



Implementation: Component Controllers

A

Managed Service A

Monitor
Controller

Analyzer
Controller

Planner
Controller

Executor
Controller

External
Monitor Controller

Monitoring Analysis Planning Execution

Metrics Rules Plans Actions

I (Metrics, Rules, Plans, Actions) = High-Level Objectives



Implementation: Component Controllers

A

Managed Service A

Monitor
Controller

Analyzer
Controller

Planner
Controller

Executor
Controller

External
Monitor Controller

Monitoring Analysis Planning Execution

Metrics Rules Plans Actions

GCM/ProActive
Events

PAGCMScript
PAGCMAPI
Commands

I (Metrics, Rules, Plans, Actions) = High-Level Objectives



Monitoring Component

Collection, storage, computation of metrics

I Collecting JMX events from GCM/ProActive

I Supports insertion/removal of metrics

I Notifies active metrics changes

Monitor Controller

Monitoring
Manager Metric

Store

Event
Listener Record

Store

1

Metrics

GCM/ProActive Events

2

3

Record Creation

4

update subscribed
metrics

5

get external
metrics

6

notify analyzer
(if exists)



Analysis Component

Checking of conditions and generation of alarms

I Rules subscribe to Metrics

I Sends an Alarm object if necessary

Analyzer Controller

Analysis
Manager

Rules
Verifier

Metric
Event

Listener

Rule
Store

1

Rules

2

3

4

get subscribed
rules

5
sent alarm

get extra
metrics

metric change
event



Planning Component

Execution of planning algorithms (strategies)

I Associates an Alarm to one or more strategies
I Support for multiple strategies using multicast interfaces

I Selection, parallel execution of strategies

Analyzer Controller

Planner
Manager

Planner 1

Planner 2

Planner N

..

.

2 3

actions call

4

get metrics

alarms

1 plans



Execution Component

Execution of Actions over the component/service

I Support to execute reconfigurations using the GCM/ProActive
API (Java code embedded in a Action object)

I Support to execute reconfigurations using PAGCMScript
language code (extends of FScript).

Executor Controller

Execution
Manager

API
Reconfiguration

Engine

GCMScript
Reconfiguration

Engine

1

load
actions/scripts

2

execute
actions and

gcmscript comands

gcmscript
commands

API
commands



Use Case

I MD5Hash brute force cracker

I Multiactive service

I Each Solver deployed on on a different machine

I Each Solver has several workers (Slaves)

Managed Service

Manager

M

Solver 1

M

Solver 2

M

Solver 3

M

M A P E



Use Case

I MD5Hash brute force cracker

I Multiactive service

I Each Solver deployed on on a different machine

I Each Solver has several workers (Slaves)

M

Master
Slave 1

Slave 2

Slave N

...

Solver Composite Component



Use Case

Managed Service

Manager

M

Solver 1

M

Solver 2

M

Solver 3

M

M A P E



Use Case

Managed Service

Manager

M

Solver 1

M

Solver 2

M

Solver 3

M

M A P E

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)



Use Case

Managed Service

Manager

M

Solver 1

M

Solver 2

M

Solver 3

M

M A P E

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)

Total Solution Per Minute
(TSPM)

TSPM = SPM1 + SPM2 + SPM3



Use Case

Managed Service

Manager

M

Solver 1

M

Solver 2

M

Solver 3

M

M A P E

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)

Total Solution Per Minute
(TSPM)

TSPM = SPM1 + SPM2 + SPM3

TSPM >= 900



Use Case

Managed Service

Manager

M

Solver 1

M

Solver 2

M

Solver 3

M

M A P E

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)

Total Solution Per Minute
(TSPM)

TSPM = SPM1 + SPM2 + SPM3

TSPM >= 900



Use Case

Managed Service

Manager

M

Solver 1

M

Solver 2

M

Solver 3

M

M A P E

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)

Total Solution Per Minute
(TSPM)

TSPM = SPM1 + SPM2 + SPM3

TSPM >= 900
Try to add a new Slave,

otherwise,
Try to add a new Solver



Use Case

Managed Service

Manager

M

Solver 1

M

Solver 2

M

Solver 3

M

M A P E

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)

Solution Per Minute
(SPM)

Total Solution Per Minute
(TSPM)

TSPM = SPM1 + SPM2 + SPM3

TSPM >= 900
Try to add a new Slave,

otherwise,
Try to add a new Solver

GCMScript: Add new Slave

PAGCM API: Add new Solver



Use Case

Run parameters:

I Maximum number of Solvers = 3

I Maximum number of Slaves per Solver = 3

I Starting with 1 Solver and 1 Slave



Use Case: Results

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45

R
es

po
ns

e
s 

P
er

 M
in

ut
e

Time [minutes]

Adaptation to QoS change

Service Performance
Max Performance QoS
Min Performance QoS

I QoS desired change after minute 22 to “TSPM <= 300”



Use Case: Results

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45

R
es

po
ns

e
s 

P
er

 M
in

ut
e

Time [minutes]

Adaptation to QoS change

Service Performance
Max Performance QoS
Min Performance QoS

I QoS desired change after minute 22 to “TSPM <= 300”



Current Work

Current Work

I Allows instantiation of managed components using ADL
descriptor file only.

I More and different examples

I Benchmarking


